Tissue Bioengineering • HRB4084



Renato Yassutaka Faria Yaedú





(per week)
(per week)
(per week)
Duration Total
4h 1h 6 weeks 30h


It discuss the principles of tissue engineering and its clinical application in dentistry and specifically in the rehabilitation process of cleft lip and palate. 



One of the biggest challenges in the rehabilitation process of cleft lip palate is the closing of the oral-nasal fistula, bone formation in alveolar ridge and prosthetic rehabilitation of missing teeth in the alveolar cleft.  

Modern surgery underlies in minimally invasive criteria which reduces postoperative discomfort, risk and duration of surgery, surgical team and cost of surgery. So far, the best results are surgical techniques with invasive donor site for graft removal.  

Tissue bioengineering consists of a recent survey area and corroborates with modern concepts of minimally invasive surgery contributing to the search for a biomaterial, cells or growth factors that are true bone substitutes with results equal or superior to autogenous.  

In this context, understanding the tissue engineering is essential for graduate students who work directly in the rehabilitation process of cleft lip palate.  



Fundamentals of Tissue Engineering
• History and concept of tissue engineering
Undifferentiated and differentiated cells
Growth factors
Stem cells and dentistry 
Tissue engineering and therapeutic applications 



Atala A, Kasper FK, Mikos AG. Engineering complex tissues. Sci Transl Med. 2012;4(160):160rv12. doi: http://dx.doi.org/10.1126/scitranslmed.3004890

Gkioni K, Leeuwenburgh SC, Douglas TE, Mikos AG, Jansen JA. Mineralization of hydrogels for bone regeneration. Tissue Eng Part B Rev. 2010;16(6):577-85. doi: http://dx.doi.org/10.1089/ten.TEB.2010.0462

Henslee AM, Spicer PP, Yoon DM, Nair MB, Meretoja VV, Witherel KE, Jansen JA, Mikos AG, Kasper FK. Biodegradable composite scaffolds incorporating an intramedullary rod and delivering bone morphogenetic protein-2 for stabilization and bone regeneration in segmental long bone defects. Acta Biomater. 2011;7(10):3627-37. doi: http://dx.doi.org/10.1016/j.actbio.2011.06.043

Henslee AM, Gwak DH, Mikos AG, Kasper FK. Development of a biodegradable bone cement for craniofacial applications. J Biomed Mater Res A. 2012;100(9):2252-9. doi: http://dx.doi.org/10.1002/jbm.a.34157

Jahanbin A, Rashed R, Alamdari DH, Koohestanian N, Ezzati A, Kazemian M, Saghafi S, Raisolsadat MA. Success of maxillary alveolar defect repair in rats using osteoblast-differentiated human deciduous dental pulp stem cells. J Oral Maxillofac Surg. 2016;74(4):829.e1-9. doi: http://dx.doi.org/10.1016/j.joms.2015.11.033

Kretlow JD, Spicer PP, Jansen JA, Vacanti CA, Kasper FK, Mikos AG. Uncultured marrow mononuclear cells delivered within fibrin glue hydrogels to porous scaffolds enhance bone regeneration within critical-sized rat cranial defects. Tissue Eng Part A. 2010;16(12):3555-68. doi: http://dx.doi.org/10.1089/ten.TEA.2010.0471

Kretlow JD, Shi M, Young S, Spicer PP, Demian N, Jansen JA, Wong ME, Kasper FK, Mikos AG. Evaluation of soft tissue coverage over porous polymethylmethacrylate space maintainers within nonhealing alveolar bone defects. Tissue Eng Part C Methods. 2010;16(6):1427-38. doi: http://dx.doi.org/10.1089/ten.tec.2010.0046

Levorson EJ, Raman Sreerekha P, Chennazhi KP, Kasper FK, Nair SV, Mikos AG. Fabrication and characterization of multiscale electrospun scaffolds for cartilage regeneration. Biomed Mater. 2013;8(1):014103. doi: http://dx.doi.org/10.1088/1748-6041/8/1/014103

Liao H, Walboomers XF, Habraken WJ, Zhang Z, Li Y, Grijpma DW, Mikos AG, Wolke JG, Jansen JA. Injectable calcium phosphate cement with PLGA, gelatin and PTMC microspheres in a rabbit femoral defect. Acta Biomater. 2011;7(4):1752-9. doi: http://dx.doi.org/10.1016/j.actbio.2010.12.020

Liceras-Liceras E, Garzón I, España-López A, Oliveira AC, García-Gómez M, Martín-Piedra MÁ, Roda O, Alba-Tercedor J, Alaminos M, Fernández-Valadés R. Generation of a bioengineered autologous bone substitute for palate repair: an in vivo study in laboratory animals. J Tissue Eng Regen Med. 2015 Oct 9. doi: http://dx.doi.org/10.1002/term.2088 [ahead of print].

Mountziaris PM, Spicer PP, Kasper FK, Mikos AG. Harnessing and modulating inflammation in strategies for bone regeneration. Tissue Eng Part B Rev. 2011;17(6):393-402. doi: http://dx.doi.org/10.1089/ten.TEB.2011.0182

Nair MB, Kretlow JD, Mikos AG, Kasper FK. Infection and tissue engineering in segmental bone defects – a mini review. Curr Opin Biotechnol. 2011;22(5):721-5. doi: http://dx.doi.org/10.1016/j.copbio.2011.02.005

Nguyen C, Young S, Kretlow JD, Mikos AG, Wong M. Surface characteristics of biomaterials used for space maintenance in a mandibular defect: a pilot animal study. J Oral Maxillofac Surg. 2011;69(1):11-8. doi: http://dx.doi.rog/10.1016/j.joms.2010.02.026

Spicer PP, Kretlow JD, Henslee AM, Shi M, Young S, Demian N, Jansen JA, Wong ME, Mikos AG, Kasper FK. In situ formation of porous space maintainers in a composite tissue defect. J Biomed Mater Res A. 2012;100(4):827-33. doi: http://dx.doi.org/10.1002/jbm.a.34016

Stem Book [homepage in the internet]. Cambridge (MA): Harvard Stem Cell Institute; 2008 [cited 2017 mar 2]. Available from: http://www.stembook.org/

Thibault RA, Mikos AG, Kasper FK. Scaffold/extracellular matrix hybrid constructs for bone-tissue engineering. Adv Healthc Mater. 2013;2(1):13-24. doi: http://dx.doi.org/10.1002/adhm.201200209

Vo TN, Kasper FK, Mikos AG. Strategies for controlled delivery of growth factors and cells for bone regeneration. Adv Drug Deliv Rev. 2012;64(12):1292-1309. doi: http://dx.doi.org/10.1016/j.addr.2012.01.016



<<< back to Syllabus index


Seção de Pós-Graduação HRAC-USP

Horário de atendimento: de segunda a sexta-feira, das 8h às 18h (exceto feriados) | e-mail: secpghrac@usp.br